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The billiard ball model, a classical mechanical system in which all parameters 
are real variables, can perform all digital computations. An eight-state, l l -  
neighbor reversible cellular automaton (an entirely discrete system in which all 
parameters are integer variables) can simulate this model. One of  the natural 
problems for this system is to determine the shape of  a container so that the 
initial specific distribution of gas molecules eventually leads to a predetermined 
distribution. This problem is PSPACE-complete. Related intractable and deci- 
dable problems are discussed as well. 

1. INTRODUCTION 

It is generally accepted that reversible universal computing models 
reflect the basic laws of physics, and with a theory of reversible computing 
we can attain a connection between abstract computing and (microscopic) 
physical laws. It is worth considering this theory, because any concrete 
implementation of abstract computing is based on such laws. 

In recent years, based on pioneering work of Fredkin and Toffoli 
(1982), it has become possible to get explicit connections between abstract 
computational models and physical phenomena. They have shown that the 
billiard ball model (BBM) can perform all digital computations, and thus 
it has computational universality. This model is a classical mechanical 
system which obeys a continuous dynamics, and all its parameters (coordin- 
ates, times, velocities, etc.) are real variables. The universality of this system 
has been proved by showing that it can represent the "conservative logic" 
gates. 

Margolus (1984) has given some reversible cellular automata that 
duplicate the behavior of the BBM. A cellular automaton (CA) consists of 
a "space," which is divided into cubes (cells) of uniform size. Each cell 
can be in one of a finite number of states. The states of all cells change 
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simultaneously in discrete time steps. Each cell has a set of  neighboring 
cells, and the neighborhood patterns of  all cells are equal. After each time 
step, the state of  each cell changes according to the states of  its neighboring 
cells at a previous time. This is determined by a local (transition) map, 
which acts uniformly everywhere. The states of  all cells at each time 
determine a configuration of  the CA. The time evolution of  the system leads 
to a parallel (transition) map, which acts on configurations. A CA is said 
to be reversible if its parallel map  is bijective. [For formal definitions see, 
e.g., Di Gregorio and Trautter (1975), Richardson (1972), and Toffoli 
(1977).] 

Margolus (1984) has given two nonstandard reversible cellular 
automata  for simulating the BBM. The first is a two-state, four-neighbor 
automaton,  but the neighboring cells of  each cell are not fixed. This 
automaton can be defined as an eight-state, 25-neighbor standard reversible 
CA; but in this new automaton the "bal ls"  jump and "collisions" occur 
with delay. The second is a three-state, nine-neighbor second-order 
automaton;  i.e., the state of  a cell at the time t + 1 depends not only on the 
state of  its neighbors at the time t, but also on its state at the time t - 1. It 
can be defined as a nine-state, nine-neighbor standard CA; but in this new 
automaton each "bal l"  leaves its trace on its back and "mirrors"  consist of  
a group of  resting "balls ."  

We will show that it is possible to simulate the BBM by a standard 
eight-state, l l -neighbor ,  reversible cellular automaton.  

2. AN EIGHT-STATE, ELEVEN-NEIGHBOR, REVERSIBLE 
CELLULAR AUTOMATON 

It is easier to describe our CA as a stylized version of the BBM. Then, 
it will be clear how to define the formal local transition map of this CA. 

First, we consider a "universe" in which there are only two kinds of  
particles: (1) moving particles, which never stop; we call them "bal ls";  and 
(2) infinitely massive particles, which never move, even when kicked by 
moving particles; we call them "mirrors"  (we can also consider the last 
particles as "force fields".) There are only two possible directions for moving 
balls, which are perpendicular  to each other. We indicate them by right-to- 
left and down-to-up vectors. All balls have constant and equal velocity. The 
"universe" is a Euclidean two-dimensional plane. In this plane, there are 
Cartesian coordinate systems in which at some moments  all particles are 
at points with integer coordinates. I f  we consider one of  these moments  as 
the origin of  time, then at t i m e s , . . . ,  0, 1, 2 , . . .  all particles have integer 
coordinates, and these numbers completely determine the system; so we 
can consider our "universe" as a system in which both space and time are 
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discrete. The possible places for particles constitute nodes of  a grid in the 
plane, and at each moment  each particle is at some node of this grid. One 
of the specific features of  this system is that at a node there may be particles 
of  different kinds simultaneously (two balls are of  different kinds if their 
directions are different). 

So, in our CA eight different states can occur at a node. These states 
are represented in Figure 1. In the figures, we represent each node by a 
square with this node as its center. 

The state 0 represents the absence of any particle (in cellular automata  
terminology, it is the quiescent state). The states 1 and 2 represent balls in 
different directions. The state 4 represents a mirror. The states 3 and 5-7 
represent the four possible occurrences of  more than one particle at a node. 

Now we explain the kinematic laws in this "universe." At each time 
step, the balls move one node, according to their directions. Figure 2 
represents various possible cases. This law is violated in a few cases which 
we will describe later. 

Mirrors never move, but they change the "local geometry" of  their 
region, that is, the balls move according to different laws near the mirrors. 
When one or two balls kick a mirror (this will be denoted by the states 5, 
6, or 7), then their directions change. The first three rows of Figure 3 
represent this situation, and other rows represent possible cases for kicking. 
The law defined by last three rows would be violated in a few cases that 
we will describe later. 

I f  there is more than one adjacent mirror in a region, then new special 
laws govern there. Two or more adjacent mirrors will shift the path of  a 
ball. This law is expressed in Figures 4, 5, and 7. In these and other figures 
a dot in a cell indicates the absence of mirror at that node, that is, that cell 
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is in one of the states 0-3; in these figures, the state of unspecified cells 
may be any state. 

There is a superposition rule, i.e., for determining the state of the 
"universe" at a moment, all the above laws apply simultaneously. It can 
easily be checked that these laws are mutually consistent with each other. 
For example, from the laws indicated by Figures 4c and 4d, one has the 
law indicated by Figure 8. 
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Now, it can be easily verified that the state of  a cell at time t + 1 only 
depends on itself and the states of  all ten of  its adjacent cells, which indicated 
in Figure 9, at time t. Since there are eight possible states for each ceil, the 
kinematic laws of  our "universe" can be expressed as local transition maps 
of an eight-state, l l -ne ighbor  cellular automaton.  

| 

Fig. 9. 
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3. UNIVERSALITY 

In this section we prove that our system is computationally universal. 
This means that it can simulate all computational processes, i.e., it can 
simulate a universal digital computer. For this, it is enough to show that 
this system can simulate the BBM, because it has been  proved that this 
model is computationally universal (Fredkin and Toffoli, 1982). 

The BBM has been described in Fredkin and Toffoli (1982) and 
Margolus (1984), and we refer the reader to these references for its definition. 
States 1 and 2 represent balls moving left-to-right and down-to-up, respec- 
tively. The state 4 clearly acts as a reflector in the BBM. Figures 6 and 7 
represent the collision of  two balls. We must also show that in our system 
balls can move from right to left and from up to down. Figures 4a and 4c 
show that a horizontal string of  every other mirror can transform a ball 
from right to left; similarly, Figures 5a and 5c show that a vertical string 
of every other mirror can transform a ball from up to down. If  another ball 
is to cross over these strings, then according to Figures 4b, 4d, 5b, and 5d 
it will be shifted to another row or column, but with mirrors suitably placed 
it can go back to its original row or column. Thus, as far as its computational 
universality is concerned, the BBM can be simulated by our system. 

Here we explicitly represent two important gates in reversible comput- 
ing. Figure 10 represents a delay gate and its action. Figure 11 represents 
a switch gate and its action. (Note the use of the superposition rule in 
Figures 10 and 11.) 

4.  R E V E R S I B I L I T Y  

There are many  definitions of  "reversibility" in cellular automata. 
These definitions and their relations to each other have been discussed in 
Di Gregorio and Trautter (1975). Here we choose the most restrictive 
definition. A CA is reversible if every configuration of it has a unique 
predecessor. More formally, let c~ be the set of  all configurations of  the 
CA. Let F be the parallel map of this CA. Now, if F is a bijective (i.e., 
one-to-one and onto) map from c~ to ~, then it is said that this CA is 
reversible. A configuration is said to be finite if it has only a finite number 
of  nonquiescent cells. In our automaton every finite configuration has a 
unique predecessor that is also a finite configuration. This is obvious because 
of  the fact that our system has a "conservation law": the total number of 
balls and mirrors is fixed. 

Let ~" be the local transition map of  our CA defined by Figures 2-7 
and the superposition rule. Let o- be the local transition map defined by 
interchanging configurations at time t and t+  1 in Figures 2-7 and the 
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superposition rule. The transition map o- is well defined, because no overlap- 
ping can occur. 

I f  we represent the parallel maps associated with ~" and o- by F and 
G, respectively, then it is easily verified that for every configuration C (finite 
or infinite), we have F ( G ( C ) )  = C and G ( F ( C ) )  = C. Thus, F is a bijective 
map and our CA is reversible. 
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5. AN INTRACTABLE P R O B L E M  

The complexity of a solvable problem by a computational procedure 
can be measured by the number of steps or the volume of storage capacity 
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needed for performing that procedure. These quantities are said to be the 
time and space complexity of  that problem, respectively. These measures 
are expressed as functions of the size n of  instances of  that problem; i.e., 
the amount of  information used in specifying that instance. One may then 
define several classes of  problems. The first, denoted by P, are those that 
can be solved in a time polynomial in n. The second, denoted by PSPACE, 
are those that can be solved in a space polynomial in n. 

It is widely accepted that only those problems have efficient algorithms 
that are in P. It is clear that P is a subclass of  PSPACE, but there is plenty 
of  evidence that P ~  PSPACE. There are plausible examples of problems 
that are in PSPACE, but they do not seem to belong to P; these problems 
are called PSPACE-complete, because every instance of a problem in 
PSPACE can be decoded efficiently (i.e., in a time polynomial in the size 
of that instance) to an instance of these problems. So, every procedure for 
solving a PSPACE-complete problem actually mimics the operation of a 
universal computer with polynomial-bounded storage capacity. If, as is 
widely conjectured, it is true that P ~ PSPACE, then all PSPACE-complete 
problems are actually intractable. [For a comprehensive study of these 
notions see Hopcroft  and Ullman (1979).] 

We will show that the following problem, which occurs naturally in 
our automaton, is PSPACE-complete, and consequently, is intractable: there 
is a specific distribution of  balls (in various directions); can we place some 
mirrors in the grid so that these balls will eventually reach a predetermined 
distribution? Before proving this, we give some necessary definitions. 

In the sequel, all configurations are finite. By considering a coordinate 
system for each cell, we can give its coordinates as its address. A window 
is a finite collection of  addresses of cells; and we say that a particle is in 
the scope of  a window if the address of  its cell is in that window. If  C is 
a configuration and W is a window, the restriction of C to W, denoted by 
C] W, is the configuration obtained from C by eliminating all particles that 
are not in the scope of W; so, in C] W the state of  all cells whose addresses 
are not in W is quiescent. If  C and D are two configurations, then C + D 
is the configuration obtained by superposing C and D; this is only defined 
when no cells of C and D have the same particles. 

Let C and D be two (finite or infinite) configurations. We say that D 
is accessible from C, and write C ~ D, if there is a positive integer k such 
that Fk(c)= D, where F is the parallel map of  the automaton and Fk(c)  
indicates k times application of F to C. In this case we also say that D is 
accessible from C after k steps. 

A mirror replacement (m.r.) is a finite configuration in which there are 
no balls; and a ball replacement (b.r.) is a finite configuration in which there 
are no mirrors. 
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Every configuration C can be considered as a function from Z x Z to 
the set of  states, where Z denotes the set of  integers. Each element c = (i,j) 
from Z x Z represents the address of  a cell and C(c) is the state of  that 
cell. The support  of  a configuration C is the set of  all c's such that C(c) # 0; 
and the scope of finite configuration C is the smallest rectangular set of  
adjacent cells that contains the support  of  C. 

Mirror Replacement Problem (MRP) 

Instance. Two finite sets 

{ A 1 , . . . , A , }  and { B 1 , . . . , B , }  

of  b.r. 's and a set { W 1 , . . . ,  W,} of  windows. 

Question. Is there an m.r. M such that for each i, 1-< i-< n, we have 
A,+(MIW~ ) ~- B, + (MI W~)? 

Lemma. For every m.r. M with scope S there are two sets of  b.r. 's 
{ A 1 , . . . , A k }  and {B~ , . . . ,Bk}  and a set of  windows 

{w,,..., wk} 

that completely determine M;  i.e., M is the only m.r. with scope S such 
that for every i, 1 - i _ k, we have 

A, + (M I W,.) k- B, + (M[ ~ )  

Furthermore,  k and the sizes of  these b.r. 's and m.r. 's are linear in the size 
of  M. 

Proof. We arrange the cells in S as a sequence 

Cl, C2,..., Ck 

For every cell c;, let el be its eastern neighbor and s~ its southern 
neighbor, as indicated in Figure 12. I f  c~ contains a mirror, then W~ consists 

ci e i 

s i 

Fig. 12. 
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of  the addresses of  ci and ei, and the b.r.'s At and Bi are defined for arbitrary 
cell c as follows: 

2, c = ci 
A i ( c )=  O, c ~ c i  

(1) 
1, c=ei  

B~(c)= O, c # e t  

If  ct is in the quiescent state, then 

1, C=Ci 
Ai (c )=  O, c~c t  

and if et is also in the quiescent state, then W~ consists of addresses of  c~ 
and ei, and B~ is defined by (1); if ei contains a mirror and si is in the 
quiescent state, then W~ consists of addresses of c~, e~, and st and 

1, C=Si 
B~(c)= O, cCs~ 

and finally, if both ei and s~ contain a mirror, then Wt consists of  addresses 
of  ct and c~, and B~ is defined by (1). 

Now, it is easily verified that the configurations A~, Bi and W~ satisfy 
the requirements of  the lemma. �9 

Theorem 1. The MRP is PSPACE-complete. 

Proof. Let T be a P(n) -space  bounded, deterministic Turing machine, 
where P(n)  is a polynomial (for a comprehensive study of  this and sub- 
sequent notions see Hopcroft  and Ullman, 1979). Since our cellular 
automaton is computationally universal, the behavior of T can be simulated 
by this CA. We can assume that there is a standard procedure for encoding 
inputs and accepting and rejecting terminations of T as special finite 
configurations in this CA. So, for every input w of  T, there are b.r.'s I and 
A that encode input w and accept termination of T over w, respectively. 
The sizes of I and A are both bounded by polynomial functions of n, where 
n is the length of  w. There is also an m.r. M that represents action of  T 
and supplies adequate space for computation of  T over w; the size of  M 
is linear in p2(n). Let S be the scope of  M, and W the window consisting 
of  addresses of  cells of  S. [A similar construction is used in Berlekamp et 
al. (1982) and Nourai and Kashef  (1975).] 

Now, by previous lemma, there are sets {A1 . . . .  , Ak} and {Bl, � 9  Bk} 
of  b.r.'s and a set 

{ w ,  . . . .  , w k }  

of  windows that determine M uniquely. 
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The sizes of  these sets are polynomial functions of  n. Now, T accepts 
w iff the MRP associated with sets {I, A1 . . . .  , Ak} and {A, B1 , . . . ,  Bk} of 
b.r.'s and { W1, . . . ,  Wk} of windows is solvable. So, the MRP is PSPACE- 
hard. 

It is obvious that the MRP itself is in PSPACE. For solving any instance 
of this problem, it suffices to consider all possible m.r.'s whose scope is 
determined by the given window, separately. II 

6. D E C I D A B L E  A N D  U N D E C I D A B L E  P R O B L E M S  

By an undecidable problem we mean a problem for which there is no 
computational procedure (algorithm) that can solve every instance of that 
problem. There are many well-known undecidable problems. One of  them 
is the "dying problem" in universal cellular automata; i.e., given a finite 
configuration, does it eventually lead to the quiescent configuration? For 
example, it has been proved that the dying problem for the "game of  Life" 
is undecidable; the "game of  Life" is a two-state, nine-neighbor, two- 
dimensional, irreversible, universal cellular automaton (Berlekamp et al., 
1982). 

In our reversible cellular automaton the dying problem is clearly 
decidable, because no nonquiescent configuration can lead to the quiescent 
configuration. 

The dying problem is a special case of  a more general problem: 

Accessibility Problem (AP) 

Instance. Two configurations C and D of a cellular automaton. 

Question. In this automaton, is it true that C F- D?  

It is clear that for all cellular automata with the dying problem undeci- 
dable, the AP is undecidable, too. But for our reversible cellular automaton 
this problem is decidable, because, in this CA, the number of  particles is 
invariant, and for every finite configuration C, the evolution of C by our 
CA leads either to a periodic sequence of configurations or to configurations 
whose scopes are arbitrarily large. The latter occurs only when some balls 
of C go beyond the scope of mirrors of C. One needs a finite time to decide 
whether D is accessible from C or not. 

But why is the AP for this reversible cellular automaton decidable, 
while for some irreversible cellular automata it is undecidable? In all 
undecidable problems some instances of the problems need an unbounded 
amount of memory capacity; and in our CA the accessible memory is 
actually a part of the initial configuration, and because of  the "conservation 
law" of this automaton, this memory capacity cannot be increased during 
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the evolution of  the automaton, so it is bounded. The situation is similar 
to real computing machines, where the amount  of  memory capacity is 
restricted by physical constraints. This is further evidence that the reversible 
computing reveals the physical aspects of  computing. 

Now that the AP of our automaton is decidable, what about its com- 
plexity? 

Theorem 2. The AP of  our reversible universal cellular automaton is 
PSPACE-complete. 

Proof. For every polynomial P(n) ,  every P(n) -space  bounded Turing 
machine T, and every input of  w of length n for T, there are finite configur- 
ations C and D such that C represents the input w and the transition rules 
of  T and also provides permissible memory capacity, and D represents 
accepting termination of T on w. Now, T accepts w iff D is accessible 
from C. 

Furthermore, it is obvious that the AP is in PSPACE. Therefore, the 
AP is PSPACE-complete. II 

Now we consider a similar problem, which is a special case of  the 
MRP. There are two b.r.'s B and B'; is there an m.r. M such that B +  
M ~- B ' + M ?  (note that there are no windows). It can be shown that this 
problem is always decidable; if the numbers of  balls of  B and B' are equal, 
then the answer is yes; otherwise, no. If  we add a window W and want 
B+MIW~ B'+MIW, then the new problem is clearly in PSPACE, and it 
seems that it is actually a PSPACE-complete problem, but we have no proof. 
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