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The billiard ball model, a classical mechanical system in which all parameters
are real variables, can perform all digital computations. An eight-state, 11-
neighbor reversible cellular automaton (an entirely discrete system in which alil
parameters are integer variables) can simulate this model. One of the natural
problems for this system is to determine the shape of a container so that the
initial specific distribution of gas molecules eventually leads to a predetermined
distribution. This problem is PSPACE-complete. Related intractable and deci-
dable problems are discussed as well.

1. INTRODUCTION

It is generally accepted that reversible universal computing models
reflect the basic laws of physics, and with a theory of reversible computing
we can attain a connection between abstract computing and (microscopic)
physical laws. It is worth considering this theory, because any concrete
implementation of abstract computing is based on such laws.

In recent years, based on pioneering work of Fredkin and Toffoli
(1982), it has become possible to get explicit connections between abstract
computational models and physical phenomena. They have shown that the
billiard ball model (BBM) can perform all digital computations, and thus
it has computational universality. This model is a classical mechanical
system which obeys a continuous dynamics, and all its parameters (coordin-
ates, times, velocities, etc.) are real variables. The universality of this system
has been proved by showing that it can represent the “conservative logic”
gates.

Margolus (1984) has given some reversible cellular automata that
duplicate the behavior of the BBM. A cellular automaton (CA) consists of
a “space,” which is divided into cubes (cells) of uniform size. Each cell
can be in one of a finite number of states. The states of all cells change
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simultaneously in discrete time steps. Each cell has a set of neighboring
cells, and the neighborhood patterns of all cells are equal. After each time
step, the state of each cell changes according to the states of its neighboring
cells at a previous time. This is determined by a local (transition) map,
which acts uniformly everywhere. The states of all cells at each time
determine a configuration of the CA. The time evolution of the system leads
to a parallel (transition) map, which acts on configurations. A CA is said
to be reversible if its parallel map is bijective. [ For formal definitions see,
e.g., Di Gregorio and Trautter (1975), Richardson (1972), and Toffoli
(1977).]

Margolus (1984) has given two nonstandard reversible cellular
automata for simulating the BBM. The first is a two-state, four-neighbor
automaton, but the neighboring cells of each cell are not fixed. This
automaton can be defined as an eight-state, 25-neighbor standard reversible
CA; but in this new automaton the “balls” jump and “collisions” occur
with delay. The second is a three-state, nine-neighbor second-order
automaton,; i.e., the state of a cell at the time ¢+ 1 depends not only on the
state of its neighbors at the time ¢, but also on its state at the time r—1. It
can be defined as a nine-state, nine-neighbor standard CA; but in this new
automaton each “ball” leaves its trace on its back and “mirrors” consist of
a group of resting “balls.”

We will show that it is possible to simulate the BBM by a standard
eight-state, 11-neighbor, reversible cellular automaton.

2. AN EIGHT-STATE, ELEVEN-NEIGHBOR, REVERSIBLE
CELLULAR AUTOMATON

It is easier to describe our CA as a stylized version of the BBM. Then,
it will be clear how to define the formal local transition map of this CA.

First, we consider a “universe” in which there are only two kinds of
particles: (1) moving particles, which never stop; we call them “balls’’; and
(2) infinitely massive particles, which never move, even when kicked by
moving particles; we call them “mirrors” (we can also consider the last
particles as “force fields”.) There are only two possible directions for moving
balls, which are perpendicular to each other. We indicate them by right-to-
left and down-to-up vectors. All balls have constant and equal velocity. The
“universe” is a Euclidean two-dimensional plane. In this plane, there are
Cartesian coordinate systems in which at some moments all particles are
at points with integer coordinates. If we consider one of these moments as
the origin of time, then at times,...,0,1,2,... all particles have integer
coordinates, and these numbers completely determine the system; so we
can consider our “universe” as a system in which both space and time are
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discrete. The possible places for particles constitute nodes of a grid in the
plane, and at each moment each particle is at some node of this grid. One
of the specific features of this system is that at a node there may be particles
of different kinds simultaneously (two balls are of different kinds if their
directions are different).

So, in our CA eight different states can occur at a node. These states
are represented in Figure 1. In the figures, we represent each node by a
square with this node as its center.

The state 0 represents the absence of any particle (in cellular automata
terminology, it is the quiescent state). The states 1 and 2 represent balls in
different directions. The state 4 represents a mirror. The states 3 and 5-7
represent the four possible occurrences of more than one particle at a node.

Now we explain the kinematic laws in this “universe.”” At each time
step, the balls move one node, according to their directions. Figure 2
represents various possible cases. This law is violated in a few cases which
we will describe later.

Mirrors never move, but they change the “local geometry” of their
region, that is, the balls move according to different laws near the mirrors.
When one or two balls kick a mirror (this will be denoted by the states 5,
6, or 7), then their directions change. The first three rows of Figure 3
represent this situation, and other rows represent possible cases for kicking.
The law defined by last three rows would be violated in a few cases that
we will describe later.

If there is more than one adjacent mirror in a region, then new special
laws govern there. Two or more adjacent mirrors will shift the path of a
ball. This law is expressed in Figures 4, 5, and 7. In these and other figures
a dot in a cell indicates the absence of mirror at that node, that is, that cell
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Fig. 1.
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is in one of the states 0-3; in these figures, the state of unspecified cells
may be any state.

There is a superposition rule, i.e., for determining the state of the
“universe” at a moment, all the above laws apply simultaneously. It can
easily be checked that these laws are mutually consistent with each other.
For example, from the laws indicated by Figures 4c and 4d, one has the
law indicated by Figure 8.
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Now, it can be easily verified that the state of a cell at time ¢+1 only
depends on itself and the states of all ten of its adjacent cells, which indicated
in Figure 9, at time t. Since there are eight possible states for each cell, the
kinematic laws of our “universe” can be expressed as local transition maps
of an eight-state, 11-neighbor cellular automaton.

7

Fig. 9.
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3. UNIVERSALITY

In this section we prove that our system is computationally universal.
This means that it can simulate all computational processes, i.e., it can
simulate a universal digital computer. For this, it is enough to show that
this system can simulate the BBM, because it has been proved that this
model is computationally universal (Fredkin and Toffoli, 1982).

The BBM has been described in Fredkin and Toffoli (1982) and
Margolus (1984), and we refer the reader to these references for its definition.
States 1 and 2 represent balls moving left-to-right and down-to-up, respec-
tively. The state 4 clearly acts as a reflector in the BBM. Figures 6 and 7
represent the collision of two balls. We must also show that in our system
balls can move from right to left and from up to down. Figures 4a and 4c
show that a horizontal string of every other mirror can transform a ball
from right to left; similarly, Figures Sa and 5c show that a vertical string
of every other mirror can transform a ball from up to down. If another ball
is to cross over these strings, then according to Figures 4b, 4d, 5b, and 5d
it will be shifted to another row or column, but with mirrors suitably placed
it can go back to its original row or column. Thus, as far as its computational
universality is concerned, the BBM can be simulated by our system.

Here we explicitly represent two important gates in reversible comput-
ing. Figure 10 represents a delay gate and its action. Figure 11 represents
a switch gate and its action. (Note the use of the superposition rule in
Figures 10 and 11.)

4. REVERSIBILITY

There are many definitions of “reversibility” in cellular automata.
These definitions and their relations to each other have been discussed in
Di Gregorio and Trautter (1975). Here we choose the most restrictive
definition. A CA is reversible if every configuration of it has a unique
predecessor. More formally, let € be the set of all configurations of the
CA. Let F be the parallel map of this CA. Now, if F is a bijective (i.e.,
one-to-one and onto) map from € to %, then it is said that this CA is
reversible. A configuration is said to be finite if it has only a finite number
of nonquiescent cells. In our automaton every finite configuration has a
unique predecessor that is also a finite configuration. This is obvious because
of the fact that our system has a “conservation law”: the total number of
balls and mirrors is fixed.

Let 7 be the local transition map of our CA defined by Figures 2-7
and the superposition rule. Let o be the local transition map defined by
interchanging configurations at time ¢ and t+1 in Figures 2-7 and the
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superposition rule. The transition map o is well defined, because no overlap-
ping can occur.

If we represent the parallel maps associated with 7 and o by F and
G, respectively, then it is easily verified that for every configuration C (finite
or infinite), we have F(G(C)) = C and G(F(C)) = C. Thus, F is a bijective
map and our CA is reversible.
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5. AN INTRACTABLE PROBLEM

The complexity of a solvable problem by a computational procedure
can be measured by the number of steps or the volume of storage capacity
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needed for performing that procedure. These quantities are said to be the
time and space complexity of that problem, respectively. These measures
are expressed as functions of the size n of instances of that problem; i.e.,
the amount of information used in specifying that instance. One may then
define several classes of problems. The first, denoted by P, are those that
can be solved in a time polynomial in n. The second, denoted by PSPACE,
are those that can be solved in a space polynomial in n.

It is widely accepted that only those problems have efficient algorithms
that are in P. It is clear that P is a subclass of PSPACE, but there is plenty
of evidence that P PSPACE. There are plausible examples of problems
that are in PSPACE, but they do not seem to belong to P; these problems
are called PSPACE-complete, because every instance of a problem in
PSPACE can be decoded efficiently (i.e., in a time polynomial in the size
of that instance) to an instance of these problems. So, every procedure for
solving a PSPACE-complete problem actually mimics the operation of a
universal computer with polynomial-bounded storage capacity. If, as is
widely conjectured, it is true that P# PSPACE, then all PSPACE-complete
problems are actually intractable. [For a comprehensive study of these
notions see Hopcroft and Ullman (1979).]

We will show that the following problem, which occurs naturally in
our automaton, is PSPACE-complete, and consequently, is intractable: there
is a specific distribution of balls (in various directions); can we place some
mirsrors in the grid so that these balls will eventually reach a predetermined
distribution? Before proving this, we give some necessary definitions.

In the sequel, all configurations are finite. By considering a coordinate
system for each cell, we can give its coordinates as its address. A window
is a finite collection of addresses of cells; and we say that a particle is in
the scope of a window if the address of its cell is in that window. If C is
a configuration and W is a window, the restriction of C to W, denoted by
C|W, is the configuration obtained from C by eliminating all particles that
are not in the scope of W; so, in C|W the state of all cells whose addresses
are not in W is quiescent. If C and D are two configurations, then C+ D
is the configuration obtained by superposing C and D; this is only defined
when no cells of C and D have the same particles.

Let C and D be two (finite or infinite) configurations. We say that D
is accessible from C, and write C D, if there is a positive integer k such
that F*(C) = D, where F is the parallel map of the automaton and F*(C)
indicates k times application of F to C. In this case we also say that D is
accessible from C after k steps.

A mirror replacement (m.r.) is a finite configuration in which there are
no balls; and a ball replacement (b.r.) is a finite configuration in which there
are no mirrors.
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Every configuration C can be considered as a function from Z x Z to
the set of states, where Z denotes the set of integers. Each element ¢ = (i, j)
from Z x Z represents the address of a cell and C(c) is the state of that
cell. The support of a configuration C is the set of all ¢’s such that C(c¢) #0;
and the scope of finite configuration C is the smallest rectangular set of
adjacent cells that contains the support of C.
Mirror Replacement Problem (MRP)

Instance. Two finite sets

{Al""aAn} and {Bla"-an}

of b.r’s and a set {W,, ..., W,} of windows.

Question. Is there an m.r. M such that for each i, 1 <i=<n, we have
A+ (M|W)) — B;+(M|W))?

Lemma. For every m.r. M with scope S there are two sets of b.r.’s
{A,,..., A} and {B,, ..., B;} and a set of windows

{Wy,..., W, }

that completely determine M; i.e., M is the only m.r. with scope S such
that for every i, 1 =i=<k, we have

A+ (M|W,) - B, +(M|W,)

Furthermore, k and the sizes of these b.r.’s and m.r.’s are linear in the size
of M.

Proof. We arrange the cells in S as a sequence
C,C,...,C

For every cell ¢, let e be its eastern neighbor and s; its southern
neighbor, as indicated in Figure 12. If ¢; contains a mirror, then W, consists

Fig. 12.
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of the addresses of ¢; and ¢;, and the b.r.’s A; and B, are defined for arbitrary
cell ¢ as follows:

2, c=¢
Ai - s i
(€) {O, C#C;

. . (1)
C=¢e;
B' — 2 ]
(€) {O, c#e;

If ¢; is in the quiescent state, then

1, ¢c=¢
Ax — » (]
(©) {O, c# ¢

and if ¢; is also in the quiescent state, then W, consists of addresses of ¢;
and ¢;, and B; is defined by (1); if ¢; contains a mirror and s; is in the
quiescent state, then W, consists of addresses of ¢;, ¢;, and s; and

1, C=3S;

Bi(c)= {O C#S;

and finally, if both e; and s; contain a mirror, then W, consists of addresses
of ¢; and ¢;, and B; is defined by (1).

Now, it is easily verified that the configurations A;, B; and W, satisfy
the requirements of the lemma. M

Theorem 1. The MRP is PSPACE-complete.

Proof. Let T be a P(n)-space bounded, deterministic Turing machine,
where P(n) is a polynomial (for a comprehensive study of this and sub-
sequent notions see Hopcroft and Ullman, 1979). Since our cellular
automaton is computationally universal, the behavior of T can be simulated
by this CA. We can assume that there is a standard procedure for encoding
inputs and accepting and rejecting terminations of T as special finite
configurations in this CA. So, for every input w of T, there are b.r.’s I and
A that encode input w and accept termination of T over w, respectively.
The sizes of I and A are both bounded by polynomial functions of n, where
n is the length of w. There is also an m.r. M that represents action of T
and supplies adequate space for computation of T over w; the size of M
is linear in P*(n). Let S be the scope of M, and W the window consisting
of addresses of cells of S. [A similar construction is used in Berlekamp et
al. (1982) and Nourai and Kashef (1975).]

Now, by previous lemma, there are sets {A,, ..., A.yand {B,, ..., B}
of b.r.’s and a set

{Wi,..., Wi}

of windows that determine M uniquely.
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The sizes of these sets are polynomial functions of n. Now, T accepts
w iff the MRP associated with sets {I, A,,..., As} and {A, B,,..., B} of
b.r.’s and {W,,..., W.} of windows is solvable. So, the MRP is PSPACE-
hard.

It is obvious that the MRP itself is in PSPACE. For solving any instance
of this problem, it suffices to consider all possible m.r.’s whose scope is
determined by the given window, separately. WM

6. DECIDABLE AND UNDECIDABLE PROBLEMS

By an undecidable problem we mean a problem for which there is no
computational procedure (algorithm) that can solve every instance of that
problem. There are many well-known undecidable problems. One of them
is the “dying problem” in universal cellular automata; i.e., given a finite
configuration, does it eventually lead to the quiescent configuration? For
example, it has been proved that the dying problem for the “game of Life”
is undecidable; the “game of Life” is a two-state, nine-neighbor, two-
dimensional, irreversible, universal cellular automaton (Berlekamp et al.,
1982).

In our reversible cellular automaton the dying problem is clearly
decidable, because no nonquiescent configuration can lead to the quiescent
configuration.

The dying problem is a special case of a more general problem:

Accessibility Problem (AP)
Instance. Two configurations C and D of a cellular automaton.
Question, In this automaton, is it true that C— D?

It is clear that for all cellular automata with the dying problem undeci-
dable, the AP is undecidable, too. But for our reversible cellular automaton
this problem is decidable, because, in this CA, the number of particles is
invariant, and for every finite configuration C, the evolution of C by our
CA leads either to a periodic sequence of configurations or to configurations
whose scopes are arbitrarily large. The latter occurs only when some balls
of C go beyond the scope of mirrors of C. One needs a finite time to decide
whether D is accessible from C or not.

But why is the AP for this reversible cellular automaton decidable,
while for some irreversible cellular automata it is undecidable? In all
undecidable problems some instances of the problems need an unbounded
amount of memory capacity; and in our CA the accessible memory is
actually a part of the initial configuration, and because of the “conservation
law™ of this automaton, this memory capacity cannot be increased during
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the evolution of the automaton, so it is bounded. The situation is similar
to real computing machines, where the amount of memory capacity is
restricted by physical constraints. This is further evidence that the reversible
computing reveals the physical aspects of computing.

Now that the AP of our automaton is decidable, what about its com-
plexity?

Theorem 2. The AP of our reversible universal cellular automaton is
PSPACE-complete.

Proof. For every polynomial P(n), every P(n)-space bounded Turing
machine T, and every input of w of length n for T, there are finite configur-
ations C and D such that C represents the input w and the transition rules
of T and also provides permissible memory capacity, and D represents
accepting termination of T on w. Now, T accepts w iff D is accessible
from C.

Furthermore, it is obvious that the AP is in PSPACE. Therefore, the
AP is PSPACE-complete. I

Now we consider a similar problem, which is a special case of the
MRP. There are two b.r.’s B and B’; is there an m.r. M such that B+
M~ B'+ M? (note that there are no windows). It can be shown that this
problem is always decidable; if the numbers of balls of B and B’ are equal,
then the answer is yes; otherwise, no. If we add a window W and want
B+ M|W + B’+ M|W, then the new problem is clearly in PSPACE, and it
seems that it is actually a PSPACE-complete problem, but we have no proof.
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